[bookmark: _7nv4klhbqt6z]Date: 12-May-2025
CARD SCANNER
VERSION: 1.0.0
1. OVERVIEW
The Card Scanner Component is a specialized tool designed to automatically capture and retrieve Credit/Debit card details by scanning the card's physical surface. This technology significantly reduces the need for manual data entry, enhancing efficiency and accuracy.
A. Use case:
A payment or e-commerce app, where the user scans a credit/debit card using the camera to automatically extract and fill in card details like the number and expiry date for faster and error-free checkout.
B. Percentage of re-use:
Approximate 80% of reuse.

C. Features

1. Faster checkout by eliminating the need to type card numbers.

2. Improved accuracy by reducing errors from manual entry.

3. Accessibility: Helpful for users with difficulty typing or seeing small characters.

2. GETTING STARTED

A. Prerequisites
Before you start using the Card Scanner component, ensure the following
 • Volt MX Iris
B. Platforms Supported
1. Mobile
a. iOS
b. Android
2. Tablet, iPad
C. Importing the component
You can import the Forge components only into the apps that are of the Reference Architecture type.
[bookmark: _f0uz6w4vj6u4]To import the Card Scanner component, do the following:
1. Open your app project in Volt MX Iris.
2. In the Project Explorer, click the Templates tab.
 [image: Graphical user interface, text, application

Description automatically generated]
3. Right-click Components, and then select Import Component. The Import Component dialog box appears.
[image: Graphical user interface, text, application, Teams

Description automatically generated]
4. Click Browse to navigate to the location of the component, select the component, and then click Import. The component and its associated widgets and modules are added to your project.

[image:]

Once you have imported a component to your project, you can easily add the component to a form. For more information, refer Add a Component to a Form

D. Building and previewing the app
After performing all the above steps, you can build your app and run it on your device. For more information, you can refer to the Building and Viewing an Application section of the Volt MX User Guide.
 You can then run your app to see the Card Scanner work in real time.
3. REFERENCES
A. Dynamic Usage
 You can also add a Card Scanner component dynamically. To do so,
1. In the Project Explorer, on the Projects tab, click Controllers section to access the respective Form Controller. Create a method and implement the code snippet similar to the sample code mentioned below.[image:]

 createComponent: function(){
 try{
 /* Creating cardScanner component instance */
 var cardScanner = new com.voltmx.cardScanner({
 id: "cardScanner",
 isVisible: true,
 top:"0dp",
 left:"0dp",
 width:"100%",
 height:"100%",
 clipBounds: true,
 autogrowMode: voltmx.flex.AUTOGROW_NONE,
 skin: "slFbox",
 zIndex:1
 },{},{});

 /*Adding the Card Scanner component to a form*/
 this.view.add(cardScanner);
 /* Event */
 this.view.cardScanner.onSuccessResult = function(cardDetails){
 try{
 if(cardDetails){
 alert(JSON.stringify(cardDetails));
 }
 else{
 alert("No cardDetails found");
 }
 }
 catch(err){
 alert("error= "+err);
 }
 }.bind(this);
 }catch(e){
 alert("e= "+e);
 }
 }
In the code snippet, you can edit the properties of the component as per your requirement. For more information, see Setting Properties.
2. Save the file

Configuring Native Settings (iOS)
To configure the native settings for iOS, follow these steps:
1. From the Project explorer, go to Assets and expand Media.
2. Right-click Common, and then select Resource Location. Volt MX Iris opens the common resources folder in a file explorer.
[image: Graphical user interface, text

Description automatically generated]
3. Open the infoplist_configuration.json file with a text or code editor.
4. At the end of the file, type the following code. You can change the description based on your preference.

{
 "NSCameraUsageDescription" : "This uses camera Permission"
}

[image:]
5. Save the file.

Configuring Orientation

1. From the left navigation menu, click Project Settings.
2. In the Project Settings window, go to Native → iPhone/iPad.
3. Set the application launch mode to Both and select both Portrait and Landscape for supported orientations. Similarly change the orientation for the Form.
[image:]

Configuring Native Settings (Android)

To configure the native settings for Android, follow these steps:
1. From the left navigation menu, click Project Settings.
2. In the Project Settings window, go to Native → Android Mobile/Tablet.
3. Set the Minimum SDK version to 24 and under Miscellaneous→ Select Use Google Play Location Services.

[image:]
4. In the Project Settings window, go to Native → Android Mobile/Tablet → Push Notification → Select FCM.
5. As we use Firebase, the google-services.json file is essential in Firebase Cloud Messaging (FCM) for Android. It contains the Firebase project configuration and enables the Firebase SDKs to authenticate and securely communicate with the project.
How to get google-services.json
1. Go to the Firebase Console. Select your project and Go to Project Settings.
2. In the General tab, under Your apps, select your Android app.
3. Click Download google-services.json.
4. After getting google-services.json, place the google-services.json file in your project.
Path: Project -> resources -> mobile -> native -> android -> Create a folder as fcm and place the google-services.json file.
[image:]

5. In google-services.json file you will have a package name. Add that package name in Native → Android Mobile/Tablet → General Settings → Package Name.
Similarly for Tablet also add the fcm folder.
6. Switch to the Gradle Entries tab.
7. In the build.gradle entries to Suffix box, type the given code based on the version of the component.
dependencies{
 implementation 'com.google.firebase:firebase-ml-vision:17.0.0'
 implementation "androidx.constraintlayout:constraintlayout:2.1.3"
}

 [image:]
 Click Done.

B. Events
The component invokes events when its corresponding action is performed. You can configure any logic you want the component to perform whenever an event occurs. You can configure the events directly on the Actions tab or by writing a JavaScript, For more information, refer to Add Actions in the Volt MX Iris User Guide.
1. [bookmark: _lowvw5e134g0]onErrorCallback

	Description:
	Invoked when any error occurs in the component.

	Syntax:
	onErrorCallback

	Parameters:
	errObj [JSON]:
Information about the error such as the error code and error message.

	Example:
	this.view.componentID.onErrorCallback = function(errObj) {
alert("Error Occurred "+errObj); }.bind(this);

2. [bookmark: _a48q5bq0ryti]onSuccessResult

	Description:
	Receives the scanned card details after the scanning process is completed.

	Syntax:
	onSuccessResult

	Parameters:
	cardDetails [JSON]:
Details of the scanned card such as card number, expiry date, cardholder name.

	Example:
	this.view.componentID.onSuccessResult = function(cardDetails) {
alert(JSON.stringify(cardDetails)); }.bind(this);

4. REVISION HISTORY

 	App version 1.0.0:

A. Limitations
· If the card details are incomplete or the OCR is unable to recognize some components (e.g., cardholder name, expiry), the app will not properly handle these cases in all scenarios. The accuracy of the card details is dependent on the quality of the captured image.
· It may not handle scenarios where multiple cards are captured in a single scan or where the user captures multiple scans in sequence.
· Different card issuers may use different fonts and sizes, leading to incorrect text recognition, especially for card numbers or names with non-standard formatting.
· The camera should launch in the same orientation as the device (portrait or landscape) and remain locked to that orientation during capture.

[bookmark: _3083edv3eb2m]B. Known Issue

· NA

image5.png

image9.png
Project Skins Templates | Assets | O

¢
~ (5 wedia

] Common|
[Desktop

0 weore Y

] Tablet
© Wearsbles

> [Fonts

image6.png
B <> {¢} infoplist_configuration

{«} infoplist_configuration) No Selection

1

2 A

3 /%

4 "NSAppTransportSecurity" :

5 {

6 "NSAllowsArbitrarylLoads" : true ,

7 "NSExceptionDomains" :

8 {

9 "example.com" :

10 {

1 "NSIncludesSubdomains" : true ,

12 "NSExceptionAllowsInsecureHTTPLoads" : true
13 }

14 }

15 Y

16

17 "NSCameraUsageDescription" : "This is a dummy description"
18 *x/

19 "NSCameraUsageDescription" : "Card Scanner uses Camera"

20}

21

~n

image7.png
Project Settings

Application
Development Method Mobile Provision
Foundry
. development oo
v Native
P12 P12 P d
Watch
Android Mobile/Tablet
Android Wear Deeplink URL Scheme:
Windows (UWP) URL Scheme

> Desktop
Target Versions:
Adaptive Web (Mobile SPA)
iOS Version
Responsive Web
12.0

Protected Mode

Metrics APM Push Notifications:

Push Certificate

None (i]

Al Assistant Ruleset

iPad Settings:

Application Launch Mode
| Both

Supported Orientations

Portrait Landscape

Icon Settings:

iPhone | iPad = App Store

Default Theme v

Cance' m

image4.png
Application
General Settings:

Foundry
Package Name Version Code Build Format
v Native
com.hcl.cardscanner 1 .apk
iPhone/iPad
Watch SDK Versions:
Android Mobile/Tablet Minimum SDK Target SDK Maximum SDK
Android Wear 7.0 (24) 15.0 (35) None

Windows (UWP)
Android Signing:

> Desktop
Adaptive Web (Mobile SPA) Key Alias Key Password Store Password
) (] (i) (i]
Responsive Web
Store File
Protected Mode
Metrics APM
Al Assistant Ruleset SSo:
Enable SSO
Android Architectures Support:
Support arm 32-bit Devices Support x86 32-bit Devices Support arm 64-bit Devices Support x86 64-bit Devices
Supported Screens:
Any Density Small Screens Normal Screens Large Screens Extra Large Screens Resizeable

Install Location:

Use Location Preference

Miscellaneous:

Enable Local Notifications Enable Payment API Use Google Play Location Services Enable SQL DB Encryption (FIPS)

image8.png
—_—

0 forms

T glances
HeadlessBuild.properties

4 i18n.json

[jssrc

7 models

T modules

@ nativeapi.json

[nativebindings

[navigation

7 notifications

[otherresources

@ projectProperties.json

= resources

4 splashscreenproperties.json

[studioactions
[0 templates

[testresources
[themes

T userwidgets
—

[androidwear
=2 common

77 customlibs
7 desktop

T fonts

T i18n

7 manifest

= mobile

I tablet

7 watch

2 common
= native
00 web

7 android
77 iphone
2 winphone8

[drawable-en

>

[drawab...en-rus >

[drawable-pt
fcm

0 raw
[videos

>

>

>

4 google-services.json

image3.png
Project Settings

Application
Foundry
v Native
iPhone/iPad
Watch
Android Wear
Windows (UWP)
> Desktop
Adaptive Web (Mobile SPA)
Responsive Web
Protected Mode
Metrics APM

Al Assistant Ruleset

communication ArIS:

Use Watch Communication Apis

Add Watch Background Listener To Receive DataPayload

Add Watch Background Listener To Receive Message Payload
Push Notification:

Custom FCM Service (Optional)
FCM

Android Universal Settings:

Universal App Tablet Breakpoint ...

6 o
Manifest Permissions, Tags and Gradle Build Entries:

Permissions | Tags | Deeplink URL Scheme = Gradle Entries

build.gradle entries to Prefix

gradle.properties entries

build.gradle entries to Suffix

dependencies{

implementation ‘com.google.firebase:firebase-ml-vision:17.0.0'
implementation

"androidx.constraintlayout:constraintlayout:2.1.3"

}

settings.gradle entries

Cancel

image2.png
Project Skins Templates Assets

> [Mobile
> [Tablet

> (] peskiop
> @ Wearables
>

Components

o

image1.png
e
Import Component X

File name Browse

Duplicate, if component or any of its dependencies exist

image10.png
© & @ »

3

Llj
'

p

CardScanner v

Project Themes Templates Assets Q=

v BB CardScanner

< v v v v

Mobile
5|

Tablet

L

L] Desktop

Wearables

Components

v [} com.voltmx.cardScanner [1.0.0]

v cardScanner
v flxScanCard

v flxScan

>« | imgscanicon

() btnscancard
v [Modules
cardScannerControllerActions
cardScannerController.js

