Date : 05-Feb-24
BIPOLAR Area Chart
version: 1.1.2
Overview
Bipolar Area Chart is a Volt MX Iris component that creates a Bipolar Area chart, based on the data that you provide. You can use the component in your mobile app to represent the comparison between distinct items or data in the form of area chart. For examples, sales growth on monthly basis.
In the Bipolar Area Chart component, the intervals are defined on y-axis and the labels are defined on the x-axis.
[image: http://docs.kony.com/marketplace/V8/images/bipolararea_ex.png]

Use case:
i. Consider a scenario that you want to provide the stock market information in a use case in your application. In the app, you want to build a feature to represent variation in the stock values of companies on monthly basis in the form of an area. You can use the Bipolar Area Chart component to represent the variations of stock values in the form of area chart.
ii. You can also use the Bipolar Area Chart component to represent the variations of monthly department incomes.
Percentage of re-use:
85%-90% (Data can be customizable and skins are customized and also can be changed manually).
Getting Started
Prerequisites
Before you start using the Bipolar Area Chart component, ensure you have the following:

· HCL Foundry
· Volt MX Iris

Platforms Supported
Mobile
iOS
Android
Tablets
PWA

Importing the app
 You can import the Forge components only into the apps that are of the Reference Architecture type.

To import the Bipolar Area Chart component, do the following:

1. Open your app project in Volt MX Iris.
2. In the Project Explorer, click the Templates tab.

[image: Graphical user interface, text, application

Description automatically generated]

3. Right-click Components, and then select Import Component. The Import Component dialog box appears.
[image: Graphical user interface, text, application, Teams

Description automatically generated]

4. Click Browse to navigate to the location of the component, select the component, and then click Import. The component and its associated widgets and modules are added to your project.

 [image:]

Once you have imported a component to your project, you can easily add the component to a form. For more information, refer Add a Component to a Form.
After adding a component to a form, you can configure the component the way you want it using the Look, Skin, and Action tabs on the Properties pane. Configuring the properties on the Properties pane is similar to configuring the properties of any widget in VoltMX Iris.
You can also see that a new tab, Component, is added on the Properties pane. The Component tab contains assorted properties relevant to the component that allow you to customize the component as required. The properties on the Component tab are categorized as General, Axis Titles, Grid and Title properties. The General properties are the default properties of individual widgets in the component.
References
Dynamic Usage
You can also add a Bipolar Area Up Chart component dynamically. To do so:
1. In the Project Explorer, on the Projects tab, click Controllers section to access the respective formController. Create a method and implement the code snippet like the sample code mentioned below.
/* Creating the component s object */

var bipolararea = new com.voltmxmp.bipolararea(
{
	"autogrowMode": voltmx.flex.AUTOGROW_NONE,
	"clipBounds": true,
	"height": "70%",
	"id": "bipolararea",
	"isVisible": true,
	"layoutType": voltmx.flex.FREE_FORM,
	"left": "0%",
	"masterType": constants.MASTER_TYPE_USERWIDGET,
	"skin": "slFbox",
	"top": "5%",
	"width": "100%"
}, {}, {});

/* Setting the component s properties */

bipolararea.chartTitle = "Bi-Polar";
bipolararea.enableGrid = true;
bipolararea.enableLegends = false;
bipolararea.chartData =
{
	"data":
	[
	{
		"dataPoint1": "1",
		"dataPoint2": "-2",
		"dataPoint3": "0",
		"dataPoint4": "2.5",
		"dataPoint5": "",
		"label": "d1"
	},
	{
		"dataPoint1": "2",
		"dataPoint2": "-1",
		"dataPoint3": "0",
		"dataPoint4": "2",
		"dataPoint5": "",
		"label": "d2"
	},
	{
		"dataPoint1": "3",
		"dataPoint2": "-2",
		"dataPoint3": "1",
		"dataPoint4": "-0.5",
		"dataPoint5": "",
		"label": "d3"
	},
	{
		"dataPoint1": "1",
		"dataPoint2": "1",
		"dataPoint3": "-2",
		"dataPoint4": "1",
		"dataPoint5": "1",
		"label": "d4"
	},
	{
		"dataPoint1": "-2",
		"dataPoint2": "2.5",
		"dataPoint3": "2.5",
		"dataPoint4": "0.5",
		"dataPoint5": "",
		"label": "d5"
	},
	{
		"dataPoint1": "0",
		"dataPoint2": "-1",
		"dataPoint3": "2",
		"dataPoint4": "-1",
		"dataPoint5": "",
		"label": "d6"
	},
	{
		"dataPoint1": "1",
		"dataPoint2": "-2",
		"dataPoint3": "1",
		"dataPoint4": "-2.5",
		"dataPoint5": "",
		"label": "d7"
	}
]
};
bipolararea.xAxisTitle = "data";
bipolararea.legendFontSize = "95%";
bipolararea.areaDetails =
{
	"data":
	[
	{"color": "#1B9ED9", "legendName": "blue"},
	{"color": "#76C044", "legendName": "green"},
	{"color": "#F26B29", "legendName": "orange"},
	{"color": "#7A54A3", "legendName": "purple"},
],
};
bipolararea.titleFontColor = "#000000";
bipolararea.enableGridAnimation = false;
bipolararea.yAxisTitle = "value";
bipolararea.legendFontColor = "#000000";
bipolararea.titleFontSize = "12";
bipolararea.lowValue = "-10";
bipolararea.highValue = "10";
bipolararea.bgColor = "#FFFFFF";
bipolararea.enableChartAnimation = true;
bipolararea.enableStaticPreview = true;
		
/* Adding the component to the form */

this.view.add(bipolararea);
In the code snippet, you can edit the properties of the component as per your requirement.
1. Save the file.
Properties
The properties provided on the Component tab allow you to customize the UI elements in the Bipolar Area Chart component. You can set the properties directly on the Component tab or dynamically through code. This section provides information on how to set the properties dynamically through code.
i. General

Details for Areas

	Description:
	Specifies the area colors for the respective regions on the chart and their legend names.

	Syntax:
	areaDetails

	Type:
	String

	Read/Write:
	Write

	Remarks:
	The property cannot be changed dynamically.

Background Color

	Description:
	Specifies background color of the chart.

	Syntax:
	bgColor

	Type:
	String

	Read/Write:
	Write

	Example:
	this.view.componentID.bgColor= "#FFFFFF";

Enable Chart Animation

	Description:
	Controls whether or not to enable the chart animation.

	Syntax:
	enableChartAnimation

	Type:
	Boolean

	Read/Write:
	Write

	Remarks:
	Disabling the chart animation will also disable the grid animation.

	Example:
	this.view.componentID.enableChartAnimation= true;

Chart Data

	Description:
	Enables a user to provide the data to generate the chart.

	Syntax:
	chartData

	Type:
	Data Grid

	Read/Write:
	Write

	Remarks:
	The property cannot be changed dynamically.

Low Value
	Description:
	Specifies the starting value on the vertical (y) axis. The minimum value is the start index on y-axis.

	Syntax:
	lowValue

	Type:
	String

	Read/Write:
	Write

	Remarks:
	Low and High values must be passed according to the data passed to the charts.

	Example:
	this.view.componentID.lowValue= "-5";

High Value
	Description:
	Specifies the maximum value on vertical (y) axis. The maximum value is the end index on y-axis.

	Syntax:
	highValue

	Type:
	String

	Read/Write:
	Write

	Remarks:
	Low and High values must be passed according to the data passed to the charts.

	Example:
	this.view.componentID.highValue= "5";

Enable Chart with Static Data

	Description:
	Controls whether or not to enable the Static data in the chart.

	Syntax:
	enableStaticPreview

	Type:
	Boolean

	Read/Write:
	Write

	Remarks:
	The default value of the property is true.

	Example:
	this.view.componentID.enableStaticPreview = true;

ii. Axis Titles

X axis Title
	Description:
	Specifies the text to be displayed as the X-axis (horizontal axis) title.

	Syntax:
	xAxisTitle

	Type:
	String

	Read/Write:
	Write

	Example:
	this.view.componentID.xAxisTitle= "Day";

Y axis Title

	Description:
	Specifies the text to be displayed as the Y-axis (vertical axis) title.

	Syntax:
	yAxisTitle

	Type:
	String

	Read/Write:
	Write

	Example:
	this.view.componentID.yAxisTitle= "y-axis";

iii. Grid

Enable Grid

	Description:
	Controls whether or not to enable the chart grid.

	Syntax:
	enableGrid

	Type:
	Boolean

	Read/Write:
	Write

	Example:
	this.view.componentID.enableGrid= true;

Enable Grid Animation

	Description:
	Controls whether or not to enable the grid animation.

	Syntax:
	enableGridAnimation

	Type:
	Boolean

	Read/Write:
	Write

	Example:
	this.view.componentID.enableGridAnimation= true;

iv. Title

Chart Title

	Description:
	Specifies the text to be displayed as the Chart title.

	Syntax:
	chartTitle

	Type:
	String

	Read/Write:
	Write

	Example:
	this.view.componentID.chartTitle = Bi-Polar Area Chart ;

Title Font Size

	Description:
	Specifies the font size of the Chart title.

	Syntax:
	titleFontSize

	Type:
	String

	Read/Write:
	Write

	Example:
	this.view.componentID.titleFontSize= 12 ;

Title Font Color

	Description:
	Specifies the font color of the Chart title.

	Syntax:
	titleFontColor

	Type:
	String

	Read/Write:
	Write

	Remarks:
	The property expects an Hex color code preceded by the number sign (#).

	Example:
	this.view.componentID.titleFontColor = #000000 ;

v. Legends

Enable Legends

	Description:
	Controls whether or not to enable the Legends.

	Syntax:
	enableLegends

	Type:
	Boolean

	Read/Write:
	Write

	Remarks:
	The default value of the property is true.

	Example:
	this.view.componentID.enableLegends = true;

Legend Font Color

	Description:
	Specifies the font color of the Chart legend.

	Syntax:
	legendFontColor

	Type:
	String

	Read/Write:
	Write

	Remarks:
	The default value of the property is "#000000".

	Example:
	this.view.componentID.legendFontColor= #000000 ;

Legend Font Size

	Description:
	Specifies the font size of the Chart legend.

	Syntax:
	legendFontSize

	Type:
	String

	Read/Write:
	Write

	Remarks:
	The default value of the property is "95%".
The font size must be between 95% and 120% for better UI.

	Example:
	this.view.componentID.legendFontSize= 95% ;

Events
 -- None of the events are exposed.

API’s
The following API pertains to the Bipolar Area Chart component.
[bookmark: createChart]createChart
The API creates a Bipolar Area Chart.
Syntax
createChart(data)
Parameters
data:
JSON array contains the data based on which the Bipolar Area Chart is generated. The JSON array should contain data of column names and the corresponding values to generate areas, in the key-value pair format. Here is the JSON array format:
var data = [{label:"col1", dataPoint1:"val1", dataPoint2: "val3"},
 {label:"col2", dataPoint1:"val2", dataPoint2: "val4"}, ..];
In the above format, label and dataPoint1 are keys and they are case sensitive.
1. label: The key accepts values for the label names on the Horizontal (x) axis. You can specify upto Four characters as a row name. For example, "Jan". Specifying more than four characters results distortion in the component UI.
1. dataPointi: The key accepts the values corresponding to the label name on the Vertical (y) axis.
areaDetails:
JSON array contains the data based on which the colors are assigned to the respective legends. Here is the JSON array format:
var areaDetails = [{legendName: "blue" , color: "#1B9ED9" }, {legendName: "green" , color: "#76C044" } ..];
The component can conveniently handle a maximum of 07 key-value pairs in the JSON array. Defining more than seven key-value pairs results distortion in the component UI.
Return Value
None
Example
var chartData = [{lblName: "Jan", dataVal: "12"},
	 {lblName: "Feb", dataVal: "5"},
	 {lblName: "Mar", dataVal: "8"}];
this.view.componentID.chartData={data: chartData};
this.view.componentID.createChart(chartData);
Revision History
App version 1.1.2:
Known Issues
Following are the known issues in the Bipolar Area Chart component:
1. On Android, when adding the component dynamically, the layout of the component does not show up as expected.
1. Cannot handle layout properties of the component as per the device orientation. You must handle the properties at the form level.
Limitations
Following are the limitations in the Bipolar Area Chart component:
1. The label names on the horizontal axis and vertical axis should not be more than 3 to 4 characters. More number of characters leads to overlap of characters.
1. The maximum length of the data that can be passed to the chart is seven. The number of points in the JSON array should be between one and five. Each plot should have the number of points between two and seven. Exceeding the limit leads to distortions.

8
image1.png

image2.png

image3.png

image4.png

