Date : 26-Jan-22
Apple Pay (2.0.2)
Overview
Apple Pay is a mobile payment and digital wallet service that facilitates fast and easy payments for users and also eliminates the need to manually enter payment and shipping information. The Apple Pay component integrates the payment feature with Voltmx. Under the hood, the component uses the Apple Pay Passkit API.
You can configure the currency, the country, and the merchant information. You can also select the payment networks and payment methods that you want to support in your app. You can use the component is scenarios such as: A retail app for purchasing products, in which you want to provide an option to the user to make payments by using the Apple Pay services.

Use case
Apple Pay can be after a booking request to complete the payment for that booking.
Apple Pay can be also used when support service is called and user should pay for that support service.
Percentage of re-use:
85%-90% (Data can be customizable and skins are customized and also can be changed manually).
Getting Started
Prerequisites
Before you start using the component, ensure you have the following:

· HCL Foundry
· Volt MX Iris
· A registered Merchant ID that is associated with your Apple Developer account. For more information, refer to Setting Up Apply Pay Requirements in the Apple Pay Documentation.
· iOS: iOS 11.0, or later
· Active Internet Connection
 Note: Make sure that you configure the following properties before you build your app:
ISO 4217 Currency Code
Merchant Identifier
ISO 3316 Country Code
Payment Summary Items
Merchant Capabilities: It is mandatory to support 3-D Secure Protocol

Platforms Supported
Iphone Mobile
Ipad
Importing the app
 You can import the Forge components only into the apps that are of the Reference Architecture type.

To import the Apple Pay component, do the following:

1. Open your app project in Volt MX Iris.
2. In the Project Explorer, click the Templates tab.

[image: Graphical user interface, text, application

Description automatically generated]

3. Right-click Components, and then select Import Component. The Import Component dialog box appears.

[image: Graphical user interface, text, application, Teams

Description automatically generated]

4. Click Browse to navigate to the location of the component, select the component, and then click Import. The component and its associated widgets and modules are added to your project.

 [image:]

Once you have imported a component to your project, you can easily add the component to a form. For more information, refer Add a Component to a Form.
After adding a component to a form, you can configure the component the way you want it using the Look, Skin, and Action tabs on the Properties pane. Configuring the properties on the Properties pane is similar to configuring the properties of any widget in Volt MX Iris.
You can also see that a new tab, Component, is added on the Properties pane. The Component tab contains assorted properties relevant to the component that allow you to customize the component as required. The properties on the Component tab are categorized as General, Axis Titles, Grid and Title properties. The General properties are the default properties of individual widgets in the component.
References
Dynamic Usage
You can also add Apple Pay component dynamically. To do so:
1. In the Project Explorer, on the Projects tab, click Controllers section to access the respective formController. Create a method and implement the code snippet similar to the sample code mentioned below.
/* Creating the component s object */
var applepay = new com.voltmxmp.applepay(
{
	"id":"applepayDynamic",
	"top":"40%",
	"width":"100%",
	"height":"20%",
	"left":"32%"
},{}, {});

/* Setting the component's properties */
applepay.currencyCode = "USD";
applepay.merchantIdentifier = "merchant.com.jackinthebox.jibpush";
applepay.merchantCapabilities =
{
	"data":
	[
		{"capability":"3DSecureprotocol"},
		{"capability" : "EMV protocol"}
]
};

applepay.countryCode = "US";
applepay.paymentSummaryItems =
{
	"data":
	[
	{
		"amount": "5.20",
		"label": "Order Amount"
	},
	{
		"amount": "10.00",
		"label": "Shipping Cost"
	},
	{
		"amount": "-1.00",
		"label": "discount"
	}
]
};

applepay.shippingMethods =
{
	"data":
	[
	{
		"amount": "10.00",
		"detail": "guarantees that the order will by delivered by the next Day",
		"identifier": "oneDayDelivery",
		"name": "one Day Delivery"
	},
	{
		"amount": "5.00",
		"detail": "guarantees that the order will by delivered by the next two Day",
		"identifier": "twoDayDeliver",
		"name": "two day Delviery"
	},
	{
		"amount": "0.00",
		"detail": "This shipping Method usually take 1 week for Delivery",
		"identifier": "NormalDeliver",
		"name": "Normal Delivery"
	}
]
};

applepay.supportedNetworks =
{
	"data":
	[
	{"paymentNetwork": "American Express"},
	{"paymentNetwork": "Cartes Bancaires"},
	{"paymentNetwork": "China Union Pay"},
	{"paymentNetwork": "Discover"},
	{"paymentNetwork": "iD"},
	{"paymentNetwork": "Interac"},
	{"paymentNetwork": "JCB"},
	{"paymentNetwork": "MasterCard"},
	{"paymentNetwork": "Store credit and debit cards"},
	{"paymentNetwork": "QUICPay"},
	{"paymentNetwork": "Suica"},
	{"paymentNetwork": "Visa"}
]
};

applepay.supportedCountries =
{
"data":
[
	{"country": "US"}
]
};
applepay.isbillingAddressRequired = true;
applepay.isShippingAddressRequired = true;
applepay.isPhoneNumberRequired = true;
applepay.isEmailAddressRequired = true;
applepay.isContactNameRequired = true;
applepay.isContactPhoneticNameRequired = true;
applepay.type="buy";
applepay.style="black";

/* Adding the component to a form */
this.view.add(applepay);
In the code snippet, you can edit the properties of the component as per your requirement.
1. Save the file.
1. Deploying your Application
Configuring your Environment
You need to create a Merchant Identifier for the application. For more information, refer to the Configuring your Environment section in the Apple Pay Programming Guide.
During the binary or IPA creation process, after extracting the .kar file and creating the XCode project from the Plugin, you need to turn on the Apple Pay option. You can find this option in XCode's KRelease section, under the Capabilities Tab.

Properties
The properties provided on the Component tab allow you to customize the UI elements in the Apple Pay component. You can set the properties directly on the Component tab or by writing a JavaScript. This section provides information on how to set the properties by writing JavaScript.
ISO 4217 Currency Code
	Description:
	Specifies the currency that Apple Pay interprets while providing the summary items.

	Syntax:
	currencyCode

	Type:
	String

	Read/Write:
	Read + Write

	Default Value:
	USD

	Remarks:
	1. This field is mandatory.
1. Make sure that you use the three-letter ISO 4217 currency code.

	Example:
	this.view.componentID.currencyCode = "USD";

	
	

[bookmark: merchantIdentifier]Merchant Identifier
	Description:
	Specifies the Merchant ID that is registered to the application bundle identifier.
For more information, you can refer to Apple Pay Requirements in the Apple Pay Documentation.

	Syntax:
	merchantIdentifier

	Type:
	String

	Read/Write:
	Read + Write

	Remarks:
	1. This field is mandatory.
1. Make sure that this value matches one of the identifiers specified by the com.apple.developer.in-app-payments key in the app's entitlements.

	 Example:
	this.view.componentID.merchantIdentifier = "merchant.com.voltmxmp.test";

[bookmark: countryCode]
ISO 3316 Country Code
	Description:
	Specifies the country in which the payment is processed.

	Syntax:
	countryCode

	Type:
	1. Data Grid
1. JSON

	 Read/Write:
	Read + Write

	Default Value:
	US

	Remarks:
	1. This field is mandatory.
1. You need to set the two-letter ISO 3316 currency code.

	 Example:
	this.view.componentID.countryCode = "US";

[bookmark: paymentSummaryItems]
Payment Summary Items
	Description:
	Specifies the items that summarize the amount of the payment. Summary items include the order total, shipping cost, taxes, and the grand total.

	Syntax:
	paymentSummaryItems

	Type:
	1. Data Grid
1. JSON

	 Read/Write:
	Read + Write

	Remarks:
	1. This field is mandatory.
1. Every item in the grid contains the following keys:
1. label: The name of the summary item
1. amount: The value of the summary item
1. You can enter the amount for an item as negative, but make sure that the total sum of all amounts is greater than zero.
1. The component automatically calculates the grand total and displays it to the user.

	 Example:
	this.view.componentID.paymentSummaryItems =
{
"data":
[
{
	"amount": "125.23",
	"label": "Order Amount"
},
{
	"amount": "-5.00",
	"label": "Shipping Cost"
},
{
	"amount": "10.00",
	"label": "discount"
}
]
};

Shipping Methods
	Description:
	Specifies the shipping method that delivers the physical goods.

	Syntax:
	shippingMethods

	Type:
	1. Data Grid
1. JSON

	 Read/Write:
	Read + Write

	Remarks:
	1. Every item in the grid contains the following keys:
0. amount: The cost of the shipping method.
0. detail: The description of the shipping method.
0. name The summary of the shipping method.
0. identifier: The unique identifier of the shipping method

	Example:
	this.view.componentID.shippingMethods =
{
"data":
[
{
	"amount": "10.00",
	"detail": "Guarantees that the order will by delivered by the next Day",
	"identifier": "oneDayDelivery",
	"name": "One Day Delivery"
},
{
	"amount": "5.00",
	"detail": "Guarantees that the order will by delivered in the next two days",
	"identifier": "twoDayDelivery",
	"name": "Two day Delivery"
},
{
	"amount": "0.00",
	"detail": "This shipping Method usually take 1 week for Delivery",
	"identifier": "normalDelivery",
	"name": "Normal Delivery"
}
]
};

Supported Networks
	Description:
	Specifies the payment cards that you want to support for the transactions in your app.

	Syntax:
	supportedNetworks

	Type:
	1. Data Grid
1. JSON

	Read/Write:
	Read + Write

	Values:
	1. American Express
1. Cartes Bancaires
1. China Union Pay
1. Discover
1. iD
1. Interac
1. JCB
1. MasterCard
1. Store credit and debit cards
1. QUICPay
1. Suica
1. Visa

	Remarks:
	1. By default, the component enables all the supported networks.
1. Store credit and debit cards refers to the privateLabel payment network.
For more information, you can refer to PKPaymentNetwork in the Apple Pay documentation.

	Example:
	this.view.componentID.supportedNetworks =
{
"data":
[
	{"paymentNetwork": "American Express"},
	{"paymentNetwork": "MasterCard"},
	{"paymentNetwork": "Visa"}
]
};

Billing Address Required
	Description:
	Specifies whether the user needs to add a billing address to complete payment.

	Syntax:
	isbillingAddressRequired

	Type:
	Boolean

	Read/Write:
	Read + Write

	Default Value:
	False

	Example:
	this.view.componentID.isbillingAddressRequired = true;

[bookmark: shipping]Shipping Address Required
	Description:
	Specifies whether the user needs to add a shipping address to complete payment.

	Syntax:
	isShippingAddressRequired

	Type:
	Boolean

	Read/Write:
	Read + Write

	Default Value:
	False

	Example:
	this.view.componentID.isShippingAddressRequired = true;

Phone Number Required
	Description:
	Specifies whether the user needs to add a phone number to complete the shipping process.

	Syntax:
	isPhoneNumberRequired

	Type:
	Boolean

	Read/Write:
	Read + Write

	Default Value:
	False

	Example:
	this.view.componentID.isPhoneNumberRequired = true;

Email Address Required
	Description:
	Specifies whether the user needs to add an email address to complete the shipping process.

	Syntax:
	isEmailAddressRequired

	Type:
	Boolean

	Read/Write:
	Read + Write

	Default Value:
	False

	Example:
	this.view.componentID.isEmailAddressRequired = true;

Contact Name Required
	Description:
	Specifies whether the user needs to provide a contact name to complete the shipping process.

	Syntax:
	isContactNameRequired

	Type:
	Boolean

	Read/Write:
	Read + Write

	Default Value:
	False

	Remarks:
	If you set the Shipping Address Required property to true, then the component does not display this field.

	Example:
	this.view.componentID.isContactNameRequired = true;

Contact Phonetic Name Required
	Description:
	Specifies whether the user needs to provide a contact's phonetic name to complete the shipping process.

	Syntax:
	isContactPhoneticNameRequired

	Type:
	Boolean

	Read/Write:
	Read + Write

	Default Value:
	False

	Remarks:
	If you set the Shipping Address Required property to true, then the component does not display this field.

	Example:
	this.view.componentID.isContactPhoneticNameRequired = true;

[bookmark: merchantCapabilities]Merchant Capabilities
	Description:
	Specifies the processing protocols that you want to support for the payments in your app.

	Syntax:
	merchantCapabilities

	Type:
	1. Data Grid
1. JSON

	Read/Write:
	Read + Write

	Values:
	1. 3DSecureProtocol
1. EMV protocol
1. credit cards
1. debit cards

	Remarks:
	1. By default, the component enables all the merchant capabilities.
1. It is mandatory to support the 3-D Secure Protocol.

	Example:
	this.view.componentID.merchantCapabilities =
{
"data":
[
	{"capability": "3DSecureprotocol"},
	{"capability": "EMV protocol"},
	{"capability": "credit cards"},
	{"capability": "debit cards"}
]
};

Supported Countries
	Description:
	Limits the payment options to cards that are issued in the specified countries.
For example, debit cards may accept transactions only in the country that issues the card.

	Syntax:
	supportedCountries

	Type:
	1. Data Grid
1. JSON

	Read/Write:
	Read + Write

	Default Value:
	{
"data":
[
	{"country": "US"}
]
};

	Remarks:
	You need to provide the list of supported countries as ISO 3166 Codes.

	Example:
	this.view.componentID.supportedCountries =
{
"data":
[
	{"country": "US"}
]
};

Apple Pay Button
The following properties affect the Apple Pay button. The button is used either to trigger payments through Apple Pay or to prompt the user to set up a card.
Type
	Description:
	Specifies the type of button you want to render to start the Apple Pay process. For more information, you can refer to PKPaymentButtonType in the Apple Pay Documentation.

	Syntax:
	Type

	Type:
	1. String
1. List Selector

	Read/Write:
	Read + Write

	Values:
	1. addmoney
1. book
1. buy
1. checkout
1. contribute
1. donate
1. order
1. paywith
1. plain
1. reload
1. rent
1. setup
1. subscribe
1. support
1. tip

	Default Value:
	buy

	Example:
	this.view.componentID.type = "plain";

Style
	Description:
	Specifies the style that you want to apply on the Apple Pay button.
For more information, you can refer to the Apple Pay Documentation.

	Syntax:
	style

	Type:
	1. String
1. List Selector

	Read/Write:
	Read + Write

	Values:
	1. Automatic
1. white
1. whiteoutline
1. black

	Default Value:
	automatic

	Example:
	this.view.componentID.style = "black";

Events
 onAuthorizationCompletion
	Description:
	Invoked when the user validates the details and authenticates the transaction by Touch ID, Face ID, or by entering the passcode.

	Parameters:
	paymentInformation:
This Parameter provides the encrypted payment credentials, billing and shipping information.
Payment Information contains the following keys.
Token:
This contains the user's encrypted payment credentials. For more information, refer to PKPaymentToken in the Apple Pay Documentation.
Data TypePKPayment
Syntaxtoken
paymentInformation.token
Billing Information:
This contains the user's Billing Address and their name.
Data TypeJSON
SyntaxbillingInformation
paymentInformation.billingInformation
Sample JSON
{
"postalAddress":
{
	"street": "10th Avenue",
	"subAdministrativeArea": "",
	"subLocality": "",
	"city": "Bristol",
	"state": "Washington",
	"postalCode": "90210",
	"country": "United States",
	"ISOCountryCode": "US"
},

"name":
{
	"givenName": "FirstName",
	"namePrefix": "",
	"middleName": "",
	"familyName": "LastName",
	"nameSuffix": "",
	"nickname": "",
	"phoneticRepresentation": {}
}
}
Shipping Information:
This contains the user's Shipping Address and other related information such as their name, phone number, and email address.
Data TypeJSON
SyntaxshippingInformation
paymentInformation.shippingInformation
Sample JSON
{
"emailAddress": "test.account@gmail.com",
"phoneNumber": "9876543210",

"postalAddress":
{
	"street": "10th Avuenue",
	"subAdministrativeArea": "",
	"subLocality": "",
	"city": "Bristol",
	"state": "Washingtonn",
	"postalCode": "90210",
	"country": "United States",
	"ISOCountryCode": "US"
},

"name":
{
	"givenName": "FirstName",
	"namePrefix": "",
	"middleName": "",
	"familyName": "LastName",
	"nameSuffix": "",
	"nickname": "",
	"phoneticRepresentation": {}
}
}
shippingMethod:
This contains information about the shipping method selected by the user.
Data TypeJSON
SyntaxshippingMethod
paymentInformation.shippingMethod
Sample JSON
{
	"detail": "Guarantees that the order will be delivered by the next day.",
	"identifier": "oneDayDelivery"
}

	Available Methods:
	completionCallback
This callback is a parameter to the onAuthorizationCompletion event, along with the paymentInformation.
You need to call this method when the user completes the transaction with the token generated by Apple Pay. You should pass the payment status and any available errors with this call.You need to pass the following parameters to this method.
paymentStatus:
This specifies whether the transaction is successful, or it failed.
Data TypeBoolean
RemarksThis value is true if the transaction is successful, and false if the transaction fails.
errors:
This is an array of the errors caused due to user inputs.
Error: It is a JSON containing the following keys.
TypeThe types of errors can be
1. shippingAddress
1. billingAddress
1. contactField
1. Custom
fieldNameThis value represents the exact key that caused the error.
For example, street in billingAddress, or email in shippingAddress, and so on.MessageThis is a custom description that you can display to the user when an error occurs.
Sample Code:
/*
Component Consumer logic
The specified code is a sample implementation
*/

this.view.componentID.onAuthorizationCompletion = function(paymentInformation, completionCallback){
 var NSJSONSerialization = objc.import("NSJSONSerialization");
 payData = NSJSONSerialization.JSONObjectWithDataOptionsError(paymentInformation.token.paymentData, NSJSONReadingAllowFragments, null);
 var summaryItems = this.paymentSummaryItems;
 summaryItems.data[1].amount = "10.00";
 /*send the payData in json format to your backend with base 64 encode
 and your backend will deal with payment data and response it.
 Refer to https://developer.apple.com/library/archive/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html*/
 completionCallback();
};

onPaymentMethodSelection
	Description:
	Invoked when the user switches the payment method, that is, switches any card.

	Parameters:
	paymentMethod:
This Parameter gives information about the selected payment method.The value of the payment method type is as follows:
1. PaymentMethodTypeUnknown value is 0
1. PaymentMethodTypeDebit value is 1
1. PaymentMethodTypeCredit value is 2
1. PaymentMethodTypePrepaid value is 3
1. PaymentMethodTypeStore value is 4
Data TypeJSON
Sample JSON
{
"type": 1
}

	Available Methods:
	completionCallback
This callback is a parameter to the onPaymentMethodSelection event, along with the paymentMethod.
You need to call this method when the user completes changing the payment method. You may also need to change the payment summary items.
Data TypeMethod
ParametersUpdated Payment Summary [Array of JSON]
The object containing all the updated payment summary items.
RemarksIf the user doesn't want to make any changes, you can send the existing payment summary items as a parameter.
Sample Code:
/*
Component Consumer logic
The specified code is a sample implementation
*/

this.view.componentID.onPaymentMethodSelection = function(selectedPaymentMethod, completionCallback){
 var summaryItems = this.paymentSummaryItems;
 switch (selectedPaymentMethod.type) {
 case 0:
 summaryItems.data[2].amount = "-0.50";
 break;
 case 1:
 summaryItems.data[2].amount = "-2.00";
 break;
 case 2:
 summaryItems.data[2].amount = "-2.00";
 break;
 case 3:
 summaryItems.data[2].amount = "-2.00";
 break;
 case 4:
 summaryItems.data[2].amount = "-2.00";
 break;
 }
 completionCallback(summaryItems);
};

 onShippingAddressSelection
	Description:
	Invoked when the user confirms the shipping address.

	Parameters:
	shippingAddress:
This Parameter gives information about the selected shipping address.
Data TypeJSON
Sample JSON
{
	"city": "Bristol",
	"state": "Washington",
	"postalCode": "90210",
	"country": "United States",
	"ISOCountryCode": "US"
}

	Available Methods:
	completionCallback
This callback is a parameter to the onShippingAddressSelection event, along with the shippingAddress.
You need to call this method when the user completes changing the shipping address. You may also need to change the payment summary items and shipping methods according to the selected shipping address ID. You can also create an error and send it to the completion callback if you don't want to support the selected shipping address.
Data TypeMethod
Parameters
1. Error: This is a JSON object that contains an error message that shows up if the merchant doesn't support the shipping address.

1. {
1. "message": "Shipping to the current address is unavailable"
}
1. summaryItems: This is a JSON containing the updated summary items.
1. shippingMethods: This is a JSON containing the updated shipping methods.
Sample Code:
/*
Component Consumer logic
The specified code is a sample implementation
*/

this.view.componentID.onShippingAddressSelection = function(selectedShippingAddress,completionCallback){
 var summaryItems = this.paymentSummaryItems;
 var shippingMethods = this.shippingMethods;
 var error = null;
 if(selectedShippingAddress.country !== "United States")
 {
 error =
 {
 "message": "shipping cannot be possible to this address"
 };
 }
 completionCallback(error, summaryItems, shippingMethods);
};

onShippingMethodSelection
	Description:
	Invoked when the user confirms the shipping method.

	Parameters:
	shippingMethod:
This Parameter gives information about the selected shipping method.
Data TypeJSON
Sample JSON
{
"detail": "guarantees that the order will by delivered by the next Day",
"identifier": "oneDayDelivery"
}

	Available Methods:
	completionCallback
This callback is a parameter to the onShippingMethodSelection event, along with the shippingMethod.
You need to call this method when the user completes changing the shipping method. You may also need to change the payment summary items according to the selected shipping method.
Data TypeMethod
ParametersUpdated Payment Summary [Array of JSON]
The object containing all the updated payment summary items.
RemarksIf the user doesn't want to make any changes, you can send the existing payment summary items as a parameter.
Sample Code:
/*
Component Consumer logic
The specified code is a sample implementation
*/

this.view.componentID.onShippingMethodSelection = function(selectedShippingMethod, completionCallback){
 var summaryItems = this.paymentSummaryItems;
 switch (selectedShippingMethod.identifier) {
 case "oneDayDelivery":
 summaryItems.data[1].amount = "10.00";
 break;
 case "twoDayDeliver":
 summaryItems.data[1].amount = "5.00";
 break;
 case "NormalDeliver":
 summaryItems.data[1].amount = "0.00";
 break;
 }
 completionCallback(summaryItems);
 };

onApplePayDismiss
	Description:
	Invoked when the user dismisses the apple pay view. The component uses this event to update any other state.

	Parameters:
	None

.
API’s
 startPayment
	Description:
	Starts the payment procedure.

	Syntax:
	startPayment()

	Parameters:
	None

	Return Value:
	None

	Example:
	this.view.componentID.startPayment();

isApplePaySupported
	Description:
	Confirms whether Apple Pay is supported in the current region of the device.

	Syntax:
	isApplePaySupported()

	Parameters:
	None

	Return Value:
	applePaySupport [Boolean] :
Specifies whether Apple Pay is supported in the current region of the device.

	Example:
	var applePaySupport = this.view.componentID.isApplePaySupported();

if(applePaySupport === true)
{
alert("Apple Pay is supported.");
}
else
{
alert("Apple Pay is not supported.");
}

availableNetworks
	Description:
	Returns the payment methods (networks) that are supported by Apple Pay.

	Syntax:
	availableNetworks()

	Parameters:
	None

	Return Value:
	AvailableNetworks [JSON] :
Specifies whether Apple Pay is supported in the current region of the device.

	Example:
	var AvailableNetworks = this.view.componentID.availableNetworks();

alert("Available Networks are: " + JSON.stringify(AvailableNetworks));

	Sample Return JSON:
	{
"data":
[
{"paymentNetwork": "americanexpress"},
{"paymentNetwork": "cartesbancaires"},
{"paymentNetwork": "chinaunionpay"},
{"paymentNetwork": "discover"},
{"paymentNetwork": "id"},
{"paymentNetwork": "interac"},
{"paymentNetwork": "jcb"},
{"paymentNetwork": "mastercard"},
{"paymentNetwork": "storecreditanddebitcards"},
{"paymentNetwork": "quicpay"},
{"paymentNetwork": "suica"},
{"paymentNetwork": "visa"},
]
}

.
Revision History
App version 2.0.2:
Known Issues
None
Limitations
If user change any selection in the billing page, for example shipping method, and then complete the payment or cancel the billing page, next time user open the billing page again he will be always presented with default choice in the shipping method field. This is because Apple does not provide a way to keep the choice after billing page dismissed.

22
image1.png
Project Skins Templates Assets

> [Mobile
> [Tablet

> (] peskiop
> @ Wearables
>

Components

o

image2.png
e
Import Component X

File name Browse

Duplicate, if component or any of its dependencies exist

image3.png
ApplePay v

Project Skins Templates Assets ()
> [] Mobile

> [] Tablet

> [Desktop

> (5) Wearables

' com.voltmxmp.applepay [2.0.2]
> [] applepay
> [] Modules

